Muscle-pair specific distribution and grip-type modulation of neural common input to extrinsic digit flexors.

نویسندگان

  • Sara A Winges
  • Jamie A Johnston
  • Marco Santello
چکیده

To gain insight into the synergistic control of hand muscles, we have recently quantified the strength of correlated neural activity across motor units from extrinsic digit flexors during a five-digit object-hold task. We found stronger synchrony and coherence across motor units from thumb and index finger flexor muscle compartment than between the thumb flexor and other finger flexor muscle compartments. The present study of two-digit object hold was designed to determine the extent to which such distribution of common input among thumb-finger flexor muscle compartments, revealed by holding an object with five digits, is preserved when varying the functional role of a given digit pair. We recorded normal force exerted by the digits and electrical activity of single motor units from muscle flexor pollicis longus (FPL) and two compartments of the m. flexor digitorum profundus (FDP2 and FDP3; index and middle finger, respectively). Consistent with our previous results from five-digit grasping, synchrony and coherence across motor units from FPL-FDP2 was significantly stronger than in FPL-FDP3 during object hold with two digits [common input strength: 0.49 +/- 0.02 and 0.35 +/- 0.02 (means +/- SE), respectively; peak coherence: 0.0054 and 0.0038, respectively]. This suggests that the distribution of common neural input is muscle-pair specific regardless of grip type. However, the strength of coherence, but not synchrony, was significantly stronger in two- versus five-digit object hold for both muscle combinations, suggesting the periodicity of common input is sensitive to grip type.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abstract-Papers up to 4 pages should be submitted using this format

stract—The biomechanical structure of the hand s underlying neurophysiology contribute to the nation of the kinematics and kinetics necessary for igit grasping. We recently examined the neural zation of inputs to different extrinsic finger flexors multi-digit object hold and found moderate to motor unit short-term synchrony. This suggests a on neural input to the motoneurons innervating differe...

متن کامل

Periodic modulation of motor-unit activity in extrinsic hand muscles during multidigit grasping.

We recently examined the extent to which motor units of digit flexor muscles receive common input during multidigit grasping. This task elicited moderate to strong motor-unit synchrony (common input strength, CIS) across muscles (flexor digitorum profundus, FDP, and flexor pollicis longus, FPL) and across FDP muscle compartments, although the strength of this common input was not uniform across...

متن کامل

Common input to motor units of intrinsic and extrinsic hand muscles during two-digit object hold.

Anatomical and physiological evidence suggests that common input to motor neurons of hand muscles is an important neural mechanism for hand control. To gain insight into the synaptic input underlying the coordination of hand muscles, significant effort has been devoted to describing the distribution of common input across motor units of extrinsic muscles. Much less is known, however, about the ...

متن کامل

Coordination of intrinsic and extrinsic hand muscle activity as a function of wrist joint angle during two-digit grasping.

Fingertip forces result from the activation of muscles that cross the wrist and muscles whose origins and insertions reside within the hand (extrinsic and intrinsic hand muscles, respectively). Thus, tasks that involve changes in wrist angle affect the moment arm and length, hence the force-producing capabilities, of extrinsic muscles only. If a grasping task requires the exertion of constant f...

متن کامل

Common input to motor units of digit flexors during multi-digit grasping.

The control of whole hand grasping relies on complex coordination of multiple forces. While many studies have characterized the coordination of finger forces and torques, the control of hand muscle activity underlying multi-digit grasping has not been studied to the same extent. Motor-unit synchrony across finger muscles or muscle compartments might be one of the factors underlying the limited ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 96 3  شماره 

صفحات  -

تاریخ انتشار 2006